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Abstract: An enantioselective roule to the key intermediate of dihydromevinolin is described.

The mevinic acids compactin, mevinolin, and their dihydro-analogues have attracted considerable
synthetic attention because of their biological activity as inhibitors of HMG CoA reductase, the rate-limit-
ing enzyme in cholesterogenesis in man. Most plausible and intriguing strategy depends on the coupling
of a decaline portion with a 3-lactone moiety.] Although several approaches have been attempted toward
the construction of the decaline system present in mevinic acids, it is considered the intramolecular Diels-
Alder (IMDA) reaction 10 be the most promising alternative. Interestingly, three different enantiomeric
routes to the decaline portion have been reported in the literature recently,2 all of which were achieved by
IMDA reaction; Hanessian ef al.22 and Lewis ef al.2b have developed the enantioselective routes to the de-
caline systems using L-glutamic acid as the starting material, these routes were long and problematic. We
report here a new cfficient access to an optically pure key intermediate of dihydromevinolin, based on the
allenyl ether IMDA strategy.

mevinolin (R=Me) dihyromevinolin (R=Me)
compactin (R=H) dihyrocompactin (R=H)

We prepared the desired substrate 1, [a]p? +67.1° (¢ 1.3, CHCl3)* from the readily available (R)-
5-methyl-2-cyclohexenone5 in four steps: (1) treatment of the enone, first with vinylmagnesium bromide
in THF, then with aqueous H2SOy4; (2) oxidation with MnO2 in CH»Cly; (3) reduction with LiAIH4 in
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tetrahydrofuran; (4) etherfication with propargyl bromide [ag. NaOH-Et;0, BuyNI(cat.); 41% overall
yield]. When the ether 1 was heated in +-BuOH in the presence of +-BuOK (excess) for 1 h, the adduct 3
was obtained as the sole product via IMDA reaction of the allenyl ether intermediate 2 (Scheme 1).
Without purification, the adduct 3 was treated with 5% solution of 10-campheorsulphonic acid (CSA) in
methanol gave the methyl acetal 4, [a]p?? -52.0° (¢ 2.5, CHCL3) in almost quantitative yield from the

propargyl ether 1.
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Reagents and conditions ; (a) --BuOK, +-BuOH, reflux., 1 h (b) 5% CSA in MeOH, 0 °C, 30 min., 99% yicld from L.

Scheme 1

Hydroboration-oxidation of the alkene followed by oxidation (79% overall yicld from 4) furnished
the cis-fusest ketone §, [a)p?* -129.1° (¢ 1.2, CHCIl3) (Scheme 2). The ketone was converted into the
enone 6, [ap® -137.6° (¢ 1.2, CHCl3) by Saegusa's method,® and stereoselective conjugate methylation
was accomplished using lithium dimethyl cuprate to give the product 7, [a]p? -40.1° (c 1.0, CHCl3)as a
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Reagents and conditions ; (a) BH3-THF, THF, 0 “C, 20 h; 10% NaOH, 30% H202, 0 °C to room temperature, 2 h (b)
PCC, Celite, CH2Cl3, 0 °C, 2 h, 79% yicld from 4 (c) LDA, THF, -78 *C, 30 min.; TMSCI, -78 *C to room temperature, 2
h (d) Pd(OAc)3, MeCN, 35 °C, 4 h, 89% yield from § (¢) MezCuLi, EtyO, 0°C, 2 h, 96% (f) K2CO3, MeOH, reflux., 2 b,
92% (g) p-TsNHNH2, MeOH, reflux., 2 h (h) BuLi, THF, 0°C, 2 h (i) Jones reageat, acetone, 0°C, 2 h, 53% from 8
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single diastereomer with the methyl group in axial position (96% yield). After epimerization of the methy-
lated ketone 7 (92% yield), the resulting trans-fused ketone 8, [a]p?6 +141.7° (¢ 1.0, CHCl3) was con-
verted into the less-substituted olefin by Bamford-Stevens reaction.” Finally, oxidation of the methyl ac-
etal with Jones reagent afforded the desired fused tricyclic lactone 9, [o]p® +121.6° (¢ 2.0, CHCl3) in
53% overall yield from the ketone 8, whose physical properties agreed with those reported by
Hanessian.22 Since the lactone 9 has previously been converted into dihydromevinolin,2® our work re-
ported herein constitutes its formal synthesis.

Thus, we have developed an efficient route to fused lactones via an IMDA reaction of allenyl ethers
which permitted the preparation of the tricyclic intermediate for the convenient enantioselective synthesis of
dihydromevinolin (11 steps in 32% total yield).
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