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llte mcvinic ackls compact& mevino@ and their dihydro-analogues have attracted coddcmble 

syntkdc attention because of their biological activity as inhibitors of HMG CoA ductasc, the ratc-limit- 

ing enzyme in cbolestcrogenesis in man. Most plausible and intriguing strategy depends on the coupling 

ofadccalkportionwitha&ctoncmoicty. 1 Although several approaches have been attempted towd 

thcconsrrucknofthedcdincsystunprcsentinmevinicacids. itisconsidutiitbcintramolccularDicls- 

Alder (MDA) reaction to be the most promising altemative. Intcn&ngly, thne different enantiomaic 

mutes to the decdinc portion have been reported in the litcratme rccedy,~ all of which were achieved by 

MDA reaction; Han&an et al.= and LGwis et d.= have dcvelopcd the cnantiosc@~ mutes to the dc- 

dine systems using L-glutamic acidas the staltingmatuial. thcscKNIlEs wue long aIKljn&dem&. we 

repart here a new effdnt access tu an optically pum key intermediate of dihydmrncvinolin. based on the 

allcnyl ether IMJIA stnucgy.3 

mevinolilp (R-Me) 
compactin (R-H) 

dihyromcvinolin (R-Me) 
dibyrocompactin (R=H) 

We prepared the desired substrate 1. [a]DB +67-l’ (c 1.3, C!HCl3)4 from the readily available (R)- 

5-methyl-2cyclohexcnone~ in four steps: (1) treatment of the enone, iirst with vinylmagnesium bromide 

in THF, then with aqueous H2SO4; (2) oxidation with Mn% in CH2Cl2; (3) reduction with LiAlH4 in 
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tctrahydrofuran; (4) etherfication with propargyl bromide [aq. NaOH-Et20, BtqNI(catJ; 41% overall 

yield]. When the ether 1 was heated in t-BuOH in the presence of r-BuOK (excess) for 1 h, the adduct 3 

was obtained as the sole product via IMDA Itaction of the allenyl ether intermediate 2 (Scheme 1). 

Without purification. the adduct 3 was treat&l with 5% solution of lO-camphorsulphonic acid (CSA) in 

methanol gave the methyl aCecal 4. [C&I = -52.0’ (c 2.5, CHC13) in almost quantitative yield from the 

propargyl ether 1. 

1 

Reagents and conditiom ; (a) I-BuOK. r-BuOH, rcflux.. 1 h (b) 5% CSA in MCOH, 0 l C, 30 min.. 99% yield from 1. 

Scheme 1 

Hydroboration-oxidation of the alkenc followed by oxidation (79% overall yield ~IWII 4) furnished 

the &-fused ketone 5. [u]D~ -129.1’ (c 1.2, CHQ) (Scheme 2). The ketone was converted into the 

enone 6, [CZ]D~ -137.6’ (c 1.2, CHCl3) by Saegusa’s met&L6 and sterwsekxdve conjugate methylation 

was accomplished using lithium dimethyl cuprate to give the product 7. [a]$2 -40.1’ (c 1.0, CFICl3) as a 

,@ I *,*,q s,h,_i pi 

?O 8 9 

Rttgtntt and camditiom ; (t) BH3*THp. ‘IIF, 0 %. 20 h; 10% N&W, 30% Ha. 0 l C m mom ~unpcmtum. 2 h @) 

RCC, C&e, cH@2,0 ‘C, 2 h, 79% yield fran 4 (c) LDA, TIW, -78 l C, 30 min.; TMSCI. -78 % to mom tanpentwc, 2 

h (d) w(oAch. MeCN, 35 ‘C. 4 h. 89% yield fmm 5 (e) Mc$uLi. l&O, OT. 2 h, 96% (9 K2C03. MeOH, neflux.. 2 h. 

92% (e) pTsNHNJ& MeOH, renuX.. 2 b (h) BuLii THF, WC. 2 h (i) Jones nzaga~, rrcec~ne. WC. 2 h. 53% 6um 8 

Scheme 2 
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single diastemomer with the methyl group in axial position (96% yieki). After epimerization of the methy- 
hned ketone 7 (92% yield), the resulting ttans-fustd ketone 8, [aIn% +141.7’ (c 1.4 CHCl3) was con- 

~erted into the less-substituted oiefin by Bamford-Stevens reaction.7 p&ally, oxidation of the methyl ac- 
etal with Jones reagent afBxded the desired fused t&cyclic Iactone 9. [u]us +121X (c 2.0, CHCl3) in 

53% overall yield from the ketone 8, whose physical properties agreed with those reported by 
Hanessian.~ Since the lactone 9 has pmviously been converted into dihydromevinolin,~ our work re- 
~~~~i~f~~~~ 

Thus, we have developed an efficient route to fused lactones v&z an IMDA ma&on ofaILeny1 ethers 

which permitted the pmparadon of the aicyclic intermediate for the convenient tnantioselective synthesis of 
dihydrome* (11 steps in 32% totai yield). 
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